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Abstract: The objective of this short letter is to study the optimal partitioning of value stream
networks into two classes so that the number of connections between them is maximized. Such kind
of problems are frequently found in the design of different systems such as communication network
configuration, and industrial applications in which certain topological characteristics enhance value–
stream network resilience. The main interest is to improve the Max–Cut algorithm proposed in
the quantum approximate optimization approach (QAOA), looking to promote a more efficient
implementation than those already published. A discussion regarding linked problems as well as
further research questions are also reviewed.

Keywords: Industry 4.0; quantum approximate optimization algorithm; value–stream networks;
optimization

1. Introduction

Value chains linked to Industry 4.0 (I4.0) involve complex cyber-physical networks in
which information is processed efficiently by humans and machines to deliver the desired
product to a customer [1–3]. I4.0 and the Industrial Internet of Things (IIoT) both describe
further emerging landscapes for an integrated human–machine interaction [4,5]. Together,
the two concepts are grounded in intelligent, interconnected cyber–physical manufacturing
systems that are fully equipped and capable of controlling the process flow of industrial
production. Given that many decisions are made independently by machines interoperating
with production planning and fabrication systems, the integration of human users requires
new paradigms [6].

In the realm of IIoT I4.0 manufacturing, I4.0 vision has advanced the notions of smart
fabrication and smart factory by augmenting all assets with sensor–based connectivity [7].
These intelligent sensors generate a large amount of manufacturing data that helps to create
digital twins as support for a live mirror of physical processes [8,9]. The ambition is to
capture process variability within this approach, with the capability to process all relevant
information by analyzing big data in cloud computation so that manufacturers are able to
find bottlenecks in manufacturing processes, identify the causes and impacts of problems
in such a way that the effective application of measures is useful for both product design
and manufacturing engineering, including maintenance, repair and overhaul [10].

Quantum near–term simulations in classical computers have been recently used to
solve different applications [6,11], including Industry 4.0 challenges such as the modelling
of organizational decision networks as quantum circuits [12]. In this work, with the help
of quantum simulations, a new solution for the combinatorial optimization problem is
proposed, which can be applied to a wide range of applications including in the Industry
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4.0 environment. It consists in finding the “optimal” partitioning of a value chain into
two classes, such that the number of connections between them is maximized. Direct
applications are linked to introduce flexibility in value chain models by enabling extra
resilience to it, no matter whether the related processes are logistics or production related
ones. Solving this industrial process design problem potentially allows maximizing the
interaction between the elements of the value chain and thus maximizes its productiv-
ity [13,14]. Other applications can be connected to the Narrowband Internet of Things
(NB–IoT) technology. NB–IoT is a cellular radio–based access protocol specified by 3GPP
to tackle the quickly growing market for low–power wide–area connectivity significantly
targeting mobile use cases. To realize the global outreach and broad adoption of NB–IoT
services, mobile network operators (MNOs) need to guarantee end-to-end devices and
services across several vendors connected to the deployed NB–IoT systems, and that the
data transport capacity and connection modes are well understood. In this context, effi-
cient dynamic partitions depending on the low power network available are relevant for
providing a robust integrative configuration with limited transport overhead.

A solution to these problems can be formulated in terms of a combinatorial optimiza-
tion approach, which involves finding an optimal object out of a finite set of objects. In this
particular case, it involves finding ”optimal” bitstrings composed of 0’s and 1’s among
a finite set of bitstrings. Such bitstring represents a partition of nodes of a graph into
two sets, such that the number of edges between the sets is maximum. Each of the sets
represents the allocation of nodes in the value stream network or nodes in the IoT system to
specific managerial structures giving a maximal flexibility by providing the highest degree
of connectivity.

This optimization challenge is already known as the Max–Cut problem, and it is one of
the most studied combinatorial optimization problems because of its wide range of applica-
tions and because of its connections with other fields of discrete mathematics [15]. Different
solutions have been proposed for the Max–Cut type of problems, as it belongs to the so-
called NP-hard complexity class problems, where no known algorithms are able to solve
NP-hard problems in polynomial time and thus exact methods rapidly become intractable.
Such solutions include search-based algorithms [16], Machine Learning alternatives [17],
as well as Recurrent Neural Networks and Reinforcement Learning [18,19].

Quantum approaches were also proposed with a quantum approximate optimization
algorithm (QAOA) by [20]. The QAOA belongs to the class of hybrid algorithms and
requires, in addition to the execution of shallow quantum circuits, a classical optimization
process to improve the quantum circuit itself. The QAOA is an algorithm that uses uni-
tary transformations U(βi, γi), depends on two parameters βi and γi, and is arranged in
alternating blocks a number p of times (i ∈ {1, . . . , p}) given by

|ψ( #»

β ,
# »

γ)〉 = U(βi)U(γi)...U(βi)U(γi)︸ ︷︷ ︸
p times

|ψ0〉 (1)

where |ψ0〉 is a suitable state and parameters
#»

β , #»γ ∈ Rp.
The goal of the algorithm is to find the combination of parameters that allows a

quantum state |ψ( #     »

βopt, #     »γopt)〉 to yield the optimal solution [21]. This heuristic algorithm
produces then a bit string x ∈ {0, 1}n that with high probability is expected to give a good
approximation of the theoretical solution. The algorithm follows a classical optimization
scheme: first prepares a parameterized quantum state |ψ( #»

β ,
# »

γ)〉 (called the ansatz), then
computes the parameters (

#     »

βopt, #     »γopt) such that the expectation value of the quantum state
is given by

Fp = 〈ψ( #»

β , #»γ )|Hp |ψ(
#»

β , #»γ )〉 (2)

is maximized with respect to the problem Hamiltonian Hp, and finally performs a classical
optimization until some convergence criterion is reached. An overview of this is shown
schematically in Figure 1.
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Figure 1. QAOA Overview.

The convergence criterion is in the Max–Cut cost function given by

C(x) =
n

∑
i,j=1

xi(1− xj), (3)

which can be mapped to a Hamiltonian that is diagonal in the computational basis by

H = ∑
x∈{0,1}n

C(x) |x〉 〈x| , (4)

in which x ∈ {0, 1}n labels the computational basis states |x〉 ∈ C2n
. The expansion of

Zi =

(
1 0
0 −1

)
Pauli–Z operators can be obtained from the canonical expansion of C(x) by

substitution of every variable xi ∈ {0, 1} by the matrix 1
2 (1− Zi).

As indicated in the abstract, this paper aims to show that the already suggested ap-
proximate solution can be improved. The proposal for an alternative quantum algorithm
configuration improves the existing solutions up to thirty nodes. The optimization al-
gorithm proposed in Farhi et al. [20] promotes a specific sequence of unitary operators,
which means an effective expression for the Hamiltonian. Finally, such a sequence of
transformations will perform differently when the size of the circuit evolves. Our approach
can be understood in the end as a proposal for a different sequence of unitary operators,
providing a different configuration for the Hamiltonian. Then, what it is claimed is that our
algorithm (our effective expression for the Hamiltonian) performs much better than the
existing one.

The solution is implemented in a simulated quantum hardware environment, however
there are already studies showing the time and noise effects over these algorithms when
implemented in real hardware [22].

We structure the rest of the work hereinafter as follows: Section 2 outlines the modified
architecture in a reasoned manner. Then, Section 3 presents the results of the algorithm as
compared with the analytical solution, which for when |ψ( #     »

βopt, #     »γopt)〉 is not too deep can be
computed classically, and the results previously obtained by [20]. Finally, Section 4 briefly
discuss the obtained results, outlines future lines of research, and presents limitations in
the presented work.

2. Modified QAOA

In this section, we present the results of the algorithm applied to a value stream
network of n = 10 nodes. The complete results for other configurations are available in
open access in [23].

We start by representing in Figure 2 the value stream network as a graph G = {n, e}
of n = 10 unlabeled nodes and e = 13 edges.
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Figure 2. Value stream network with n = 10 nodes.

If the graph coincides with the connectivity of our logical network (either IoT topology
or value stream network), the cost function C(x) coincides with the hamiltonian H used to
generate the state.

For a shallow approximation with p = 1, the analytical solution for the expectation
value is given by

F1(β, γ) = 〈ψ1|H|ψ1〉 (5)

Combining Equations (3) and (4), the Hamiltonian H makes use of the expectation
value to measure the edges individually:

fi,k(γ, β) =
1
2
〈ψ1(γ, β)|(1− ZiZk)|ψ1(γ, β)〉 (6)

There are two types of edges: those that connect a node with degree one (A), and those
that connect a node with degree three (B). For the A–class edges, an example of the encoding
of the optimization function between nodes (0) and (1) is given by

2 fA = 1− 〈+1|U01(γ)U12(γ)U13(γ)X0(β)X1(β)Z0Z1X†
1(β)X†

0(β)U†
01(γ)U

†
12(γ)U

†
13(γ)|+1〉 (7)

and for the B–class edges, the encoding of the optimization function between nodes (1) and
(2) is given by

2 fB = 1− 〈+3|U21(γ)U24(γ)U23(γ)X1(β)X2(β)Z1Z2X†
1(β)X†

2(β)(γ)U†
12(γ)U

†
23(γ)U

†
24(γ)|+3〉 (8)

in which |+n〉 = ∑x∈{0,1}n
1√
2n |x〉 prepares for an equal superposition state followed by

a sequence of parametrized unitary operations. As shown in Equations (7) and (8) these
unitary operations are a combination of parametrized Hamiltonian cost UC(γ) = e−iγHC

and mixer layers UM(β) = e−iβHM . The subindexes in the unitary operations indicate the
nodes on which the operators act upon.

In our case n = 10, there are two A–class edges and eleven B–class edges. This
yields Equation (9), which is depicted in Figure 3 which shows the periodicity in both
parameters and exhibits a highly nonlinear behaviour.Farhi et al. [20] proposed QAOA
with the structure represented in Figure 4.

F1(β, γ) = 2 fA(β, γ) + 11 fB(β, γ) =
[
sin(4γ) sin(4β) + sin2(2β) sin2(2γ)

]
+

+
11
2

[
1− sin2(2β) sin2(2γ) cos2(4γ)− 1

4
sin(4β) cos(4γ)

(
1 + cos2(4γ)

)] (9)
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Figure 3. Analytic solution for p = 1 and value stream network configuration from Figure 2.
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Figure 4. QAOA—Farhi et al. [20].

Such an algorithm starts by preparing the system in superposition with a Hadamard
gate on all qubits. Next, a rotation of 2γ is applied to each of the edges if both are in state
|11〉. This conditional rotation has the form given by

Cp(2γ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−2iγ

. (10)
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This allows the algorithm to be applied when both qubits are in state |1〉 simultane-
ously. A quantum phase correction of γ is then applied to each of the nodes joined by each
edge. This rotation has the form given by

p(γ) =
(

1 0
0 eiγ

)
. (11)

Such configuration allows the previous rotation to be neutralized when the two qubits
are in state |11〉. The result of these two operations allows a rotation of γ to be applied to
all nodes as long as both communicating nodes are not simultaneously in state |1〉.

Finally, a rotation around the X-axis of 2β, perpendicular to the computing axis, is
applied to all nodes. This rotation has the form given by

Rx(2β) =

(
cos β −i sin β

−i sin(2β) cos(2β)

)
. (12)

In summary, in [20] the QAOA algorithm applies, after a standard superposition,
a quantum phase of γ to every node connected to each other, as long as both are not in
state |11〉, and a rotation around the perpendicular to the computational axis of 2β to all
the nodes.

On the other hand, this paper proposes a novel QAOA approach represented in
Figure 5.

Analogous to the previous example, our algorithm starts by preparing the system in
superposition with a Hadamard gate on all qubits. We then perform a conditional rotation
of γ to each node connected to another if the second is in state |1〉 in both directions. This
is done by concatenation of two U3

( γ
2 , 0, 0

)
and U3

(
−γ
2 , 0, 0

)
gates given by

U3
(γ

2
, 0, 0

)
=

(
cos
( γ

4
)
− sin

( γ
4
)

sin
( γ

4
)

cos
( γ

4
) ), (13)

and a conditional CX rotation applied to one of the nodes q0 taking the other q1 as control
given by

CXq0,q1 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

. (14)

This method works because when the control qubit |Ψ0〉 is in state |0〉, all we have is
U3
( γ

2 , 0, 0
)

followed by a U3
(
−γ
2 , 0, 0

)
and the effect is trivial. On the other hand, when

the control qubit |Ψ0〉 is in state |1〉, the net effect is a controlled rotation U3(γ, 0, 0) on
the |Ψ1〉 qubit. These rotations are taken in both directions because our network is not
directed. This algorithm is expected to yield better results than the previous one because
the transformations are differential as a function of node state.

Finally, as in the previous algorithm, a rotation around the X-axis of 2β, perpendic-
ular to the computing axis, is applied to all nodes. This rotation has the form given by
Equation (12).
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Figure 5. QAOA—Villalba–Diez et al.

3. Results

In this section, we present the results of the algorithm applied to a logical nondirected
network of n = 10 nodes. The quantum simulations presented were simulated on qiskit tool,
a Python–based quantum computing platform developed by IBM [24], and the code and
additional results can be accessed in this Open Access Repository: [23].

The results confirm our expectations and our proposed QAOA algorithm predicts the
analytical results better for a shallow quantum circuit with p = 1. A summary of the results
for different numbers of nodes is shown in Figure 6. In Table 1 we represent the comparison
of the analytical solution curve and the respective QAOA algorithms. Our solution shows
better performance in all metrics.
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Figure 6. QAOA results comparison.

Table 1. Results comparison for different measures for identifying curve similarity [25].

Analytic vs.

Farhi et al. Villalba et al.

Directed Hausdorff distance 8.22 3.84
Discrete Fréchet distance 10.89 3.84
Dynamic Time Wrapping 28.70 7.13
Partial Curve Mapping 1.6893 0.3223
Area between two curves 1.2744 0.3642
Curve-Length distance metric 141.21 26.23

The bit string that delivers the optimal solution is x = {0110011010}, as shown in
Figure 7. This graph clearly shows the configuration obtained by the QAOA algorithm
presented with two types of nodes represented in two colors, green {0} and blue {1}.
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Figure 7. Value stream network clustering with QAOA.

4. Discussion, Future Lines of Research, and Limitations

The analysis of the solution presented in Table 1 shows to what end the quality of the
solution found improves the previous one, which justifies the spent effort in considering
smarter quantum circuits for the operation of the QAOA algorithm since there is not exist
a universal strategy that works across a broad range of optimization problems. Based on
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the proposal made, the benefit of the algorithm proposed is evident against other existing
algorithms, at least in the case of p = 1. As a consequence, value–stream network design
challenges can be better understood with the aid of this quantum optimization algorithm.
More research is needed to analyze the evolution of potential benefits when the number
of transformation blocks grows up. Indeed, resources and performance figures are also
needed to get the whole perspective.

The network topology can be modified, however, if classes for the number of links per
node are extended, then a new formulation for the cost function introduced in Equation (9)
is required.

Future research lines will involve the implementation of this new proposal for quan-
tum circuits in physical quantum computers, to analyze both the performance and the
stability against noise, not only for p = 1 but also when the transformation blocks are
increased. Moreover, since two-qubit gates (e.g., CNOT gates) are significantly more er-
roneous than single qubit gates, the proposal of smarter circuits with reduced number of
two-qubit gates, such as the optimization proposed by [22], is an area of interest.

Because of the problem formulation, the network was defined and just the link of
nodes with different managerial classes was the goal. However, it could be possible to
reverse the problem and start from the node type distribution and look to connect those
nodes with a number of edges optimizing the imputation rules between them.

Some limitations can be found regarding the applicability to real cases, because the
existence of extra constraints applicable to nodes or edges. Therefore, additional aspects
related to penalty terms when formulation of the C(x) function could be a potential
workaround. Following this line, another relevant research area is to extend the current
formulation for the Max–Cut problem to the Max–k–Cut one, in line with the recent analysis
provided by [26]. Although we have obtained satisfactory results with p = 1, we can expect
a better approximation for a larger number of qubits if we increase the p parameter. This
would, however, entail additional relative difficulties in factoring the Hamiltonian in the
adiabatic hypothesis that may be problematic in practice.
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