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Abstract: This paper exposes the existing problems for optimal industrial preventive maintenance
intervals when decisions are made with right-censored data obtained from a network of sensors or
other sources. A methodology based on the use of the z transform and a semi-Markovian approach
is presented to solve these problems and obtain a much more consistent mathematical solution.
This methodology is applied to a real case study of the maintenance of large marine engines of
vessels dedicated to coastal surveillance in Spain to illustrate its usefulness. It is shown that the use
of right-censored failure data significantly decreases the value of the optimal preventive interval
calculated by the model. In addition, that optimal preventive interval increases as we consider older
failure data. In sum, applying the proposed methodology, the maintenance manager can modify the
preventive maintenance interval, obtaining a noticeable economic improvement. The results obtained
are relevant, regardless of the number of data considered, provided that data are available with a
duration of at least 75% of the value of the preventive interval.

Keywords: maintenance interval; maintenance model; semi-Markov process; right-censored data;
finite horizon; maintenance cost

1. Introduction

The main goal of this work is to present a methodology that allows finding the optimal
maintenance preventive interval when the failure data are right-censored. In particular,
we are interested in finding out how the use of right-censored data affects the calculation
of the optimal maintenance interval, considering the temporary maintenance schedule
of maintenance interventions and the different types of costs incurred. This study is
relevant, since these are the types of data that are generally available in the vast majority of
companies, which the maintenance manager must use.

When the maintenance engineer is faced with the problem of managing equipment
subject to predetermined preventive maintenance, one of the tasks is to determine the
preventive maintenance interval that economically optimises (other factors could also be
optimised) the series of interventions that can be carried out on a physical asset over a
specified period [1]. For this predetermined maintenance, the interventions can be of two
types: corrective interventions originated by a failure of some component of the equipment
(failure mode) and preventive interventions carried out after a certain number of hours,
kilometres, or units produced. The former is produced randomly, and their number and

Sensors 2022, 22, 1432. https://doi.org/10.3390/s22041432 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041432
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5135-3250
https://orcid.org/0000-0002-0828-0612
https://orcid.org/0000-0001-5350-9378
https://orcid.org/0000-0002-2423-1474
https://orcid.org/0000-0002-9677-6764
https://doi.org/10.3390/s22041432
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041432?type=check_update&version=2


Sensors 2022, 22, 1432 2 of 18

location in time depend on the failure behaviour of the component with that particular
failure mode. The second can be located in time, and the number of can be established
along any considered time horizon. In those cases where the failure mode shows wear
behaviour, these types of interventions are not independent of each other, since increasing
the number of these interventions reduces the number of those due to component failures.
However, the increase in the number of the second type of intervention implies an increase
in the associated costs of preventive maintenance, but a reduction in the costs of corrective
maintenance. Therefore, the optimal preventive maintenance interval that minimises
maintenance costs (preventive and corrective) must be found.

To find the optimal interval, the starting point is the existing status and the available
information, which must reflect the behaviour in the event of failure, the costs of mainte-
nance interventions, and the income generated by the operation of the equipment [2]. The
information on the cost of each intervention is generated during the operation and mainte-
nance phase of the equipment and is usually collected in the Computer-Aided Maintenance
Management Systems (CMMS). Once the learning period for maintenance tasks is over,
this information is usually relatively stable over time. In the same way, the information
on the income from the operation of the equipment is usually collected in the Enterprise
Resource Planning systems (ERPs) [3]. Information on behaviour in the event of failure
can be obtained from various sources, the equipment manufacturer, the history of failures
collected in the plant itself, or any other external database that presents operating condi-
tions similar to that of the equipment under study. The information referring to equipment
failures is usually right-censored due to the performance of preventive maintenance. On
rare occasions, the maintenance manager has failure data where there is no right-censored
data. This information, if it exists, is usually in the hands of manufacturers who have tested
their equipment up to its failure point. The maintenance manager cannot bear the test cost,
so the adopted policy usually follows the preventive interval set by the manufacturer. Such
settings are frequently conditioned by economic interests or brand image. In the research
carried out, an extensive data set was available; therefore, the knowledge based impact of
right censoring can be identified.

The literature on maintenance is vast, including Reliability Engineering [4–12], mainte-
nance policies and modelling [13–20], and optimal preventive maintenance intervals [21–24].
However, fewer papers address the problem of uncertainty in lifetime distribution [25–28],
either by analysing several time-based maintenance policies having uncertainty in the
parameters of the lifetime distribution [29] or using right-censored data [30], and adopt the
Markovian approach of transition between states (operational, preventive, and corrective
maintenance intervention) [31–36].

The discrete-time and continuous-time Markov models satisfy the Markov property,
i.e., the future only depends on the present, not on the past. Only the transitions between
states and their respective probabilities are considered in the discrete-time model (Markov
chain). The sojourn time in each state is irrelevant. In the continuous-time model, the
sojourn time is a random variable with an exponential distribution due to the Markovian
property. By contrast, in semi-Markov models, the sojourn time in each state does not
follow an exponential distribution. It implies that semi-Markov models do not satisfy the
Markovian property, which relaxes the constraints and improves the application value [37].
Therefore, successive transitions between states form a Markov chain, called an embedded
Markov chain in the semi-Markov model. A wider review, which provides an interesting
perspective, can be found in [7,38,39].

Additionally, other authors address the problem of using right-censored data by
proposing alternative methods, for example, Li et al. [40] found the life distributions using
a histogram-based technique to graphically obtain the maintenance interval. Mazzuchi
and van Dorp [26] used the Newton–Raphson method and MLE to try to represent the
remaining life of coupler knuckles in railway wagons. Taghipour and Banjevic [41] used
the likelihood ratio test to check for trends in the failure data and the ME algorithm to find
the parameters for trend analysis applied to pumps located in hospitals.
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However, to the best of our knowledge, very few studies provide rules and guidelines
to modify the default maintenance interval optimally, and this paper helps to fill that gap.
When the maintenance manager has censored data due to the implementation of preventive
tasks, the proposed methodology represents an advance with respect to previous works
such as [21–24,42].

This article differs from previous studies in providing the maintenance manager with
a prediction of the length of the optimal preventive interval as well as a decision rule to
improve the interval being used, based on the analysis of the results of various scenarios,
and by using the methodology able to deal with right-censored data. This rule guides the
manager in the direction of modification of the preventive interval to be used (increasing
or decreasing it) and the intensity of the modification. In this way, the uncertainty induced
by using censored data can be overcome. Therefore, to fill the identified gaps, two research
questions are formulated:

RQ1: How far is the obtained result from the optimal solution when the failure data
are censored?

RQ2: What strategy would help to move closer to the optimum based on censored
data?

The developed methodology guarantees that the solution found is optimal from a
mathematical point of view, incorporating the time right-censored data, together with
different types of costs and income. In addition, it applies a Semi–Markovian approach of
transition between states [43–45], plus the z-transform, to find the optimal maintenance
interval, which, as far as we know, is the first time it has been applied with right-censored
data. It is also relevant that the developed methodology enables the assessment and
comparison of alternative maintenance policies.

The rest of the paper is organised as follows. Section 2 provides the real data for
this study, the research questions formulated, and the methodology applied to develop
the mathematical optimisation model based on semi-Markov processes and z-transform.
Section 3 presents the results for the different cases studied. In Section 4, those results are
highlighted, discussed, and compared. Finally, Section 5 provides the conclusions drawn
from the study.

2. Materials and Methods

To adapt the preventive interval to the particular equipment conditions usage, the
manager responsible for maintenance should use the information generated by the equip-
ment itself. The failure information generated is right-censored and it is a challenge to
determine the behaviour before the failure of the equipment. The method followed to
find the optimal interval when the available failure data is right-censored is explained
throughout the article. This process is graphically summarised in Figure 1.

2.1. Real Case. Data Selection and Information Processing

This work analyses the behaviour of the O-rings located in the cooled crossover of a
12V diesel engine with 2 litres per cylinder. The crossover is a jacketed tube through which
exhaust gases flow. The engine coolant cools this tube, and two O-rings are installed at
each end of the tube to prevent coolant leakage. High temperatures affect the O-rings and
are responsible for their degradation. In this experiment, failure data have been collected
for several years, following the preventive replacement policy of O-rings every 4000 h
(scenario A). During this time, it was observed that none of the O-rings had reached this
limit, remaining at values very far from this value. This fact allows us to consider that
the values of the observed failures can be considered as “not” censored. These failures
are listed in Table 1. In addition, in some cases, the O-rings were replaced preventively
because the last failure occurred close to the time of the preventive replacement. These are
the censored values that are collected in Table 2.
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Figure 1. Graphical overview of the process.

Table 1. Hours of operation of the O-rings until failure in Scenario A.

Operation Hours to Failure

190 276 296 409 429 430 437 454 481 492 498 499
543 552 552 552 552 577 603 604 604 612 619 658
675 683 696 702 742 754 773 797 812 836 881 889
912 913 942 974 994 994 1014 1015 1024 1025 1041 1105

1183 1203 1211 1236 1238 1240 1249 1274 1295 1304 1312 1343
1345 1407 1413 1421 1442 1447 1486 1492 1542 1581 1601 1621
1630 1675 1735 1892 1926 1960 2006 2101 2242 2437 2450

Table 2. Hours of operation of the O-rings with censorship due to preventive maintenance policy in
scenario A.

Operation Hours to the Censorship

45 84 84 103 121 176 199 217 259 324 371 387
428 508 514 519 638 655 661 735 760 764 766 769
790 867 986 1006 1011 1111 1167 1188 1188 1395 1396 1505

1752 2016

Subsequently, the value of the preventive interval was modified, settling at 1000 h.
In this case, the failure data were considerably reduced as many observations were right-
censored by the predetermined preventive maintenance performed at 1000 h (scenario
B). This censorship radically changed the way of analysing the problem, since the results
will depend less on the type of technique or method used and more on the type of cen-
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sorship [46] and the extent of the censorship. Scenario B, corresponding to the preventive
interval of 1000 h, is the one that is usually presented to the maintenance manager.

Failure data and data censored by preventive corresponding to scenario B are, respec-
tively, represented in Tables 3 and 4. In Table 3, only seven of the nine failures that occurred
during the period studied appear, since two of them, those corresponding to 171 h, did not
correspond to the failure mode studied.

Table 3. Hours of operation of the O-rings until failure in Scenario B.

Operation Hours to Failure

242 480 522 633 663 839 845

Table 4 contains 25 censored values and 87 values corresponding to a 1000-h preventive
cycle completed.

Table 4. Hours of operation of the O-rings with censorship due to preventive maintenance policy in
scenario B.

Operation Hours to the Censorship

93 93 128 128 128 128 155 161 220 220 240 240
337 367 380 380 467 467 478 485 485 520 758 829
829 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

2.2. Determination of the Failure Distribution Function

Data from maintenance interventions are collected at the machine or through an
automated procedure using a network of sensors. Its mathematical use for optimisation
requires treating these data until obtaining information on the appropriate protocol that can
be understood by the model proposed for the simulation. This treatment often supposes a
loss of veracity. In other cases, it may happen that the information on which the treatment
is started is not adequate. Achieving the most reliable information to the original exposed
in the desired protocol is one of the objectives to be achieved in any optimisation process.

In our case, the original starting data could be classified into two groups, those
generated during the maintenance activities and those generated during the economic
management of those maintenance activities. The first group included failure data and
preventive activity data. These data are the hours of operation of the equipment in which
preventive and corrective interventions are carried out and the duration of these interven-
tions. In the first group, they were counted from the last repair or preventive change until
the failure appeared or until a preventive task was carried out, and the equipment was
inactive due to the intervention. The second group of data included the costs of each of
the corrective and preventive interventions that were carried out and the income obtained
from the use of the equipment.

For the first data group, it was necessary to establish the method to determine the
method of mathematically obtaining the failure distribution. Many examples can be found
in the literature [47,48]. In our case, a Weibull probability distribution function was used,
although other authors analyse different methods to estimate the parameters of the Weibull
distribution [49,50]. Other authors have previously used other distributions. However, the
Weibull distribution is the one that best adapts to the process of failure appearance in in-
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dustrial assets. Furthermore, the Weibull distribution includes the exponential distribution
and has the advantage of using two or three parameters instead of a single parameter of the
exponential function. The exponential survival function has the hazard rate constant, while
the Weibull survival distribution extends the exponential distribution to allow constant,
increasing, or decreasing hazard rates.

The estimation of the model parameters becomes a difficult task when censorship
radically changes the available information and when the opinion of experts does not help
to understand the system’s behaviour [51].

Many authors have estimated the parameters of the Weibull distribution for censored
data through the Maximum Likelihood Estimation method (MLE), using algorithms for
their numerical resolution such as the Maximised Expectation (EM) algorithm, see [52–54].
Other authors use and compare various methods such as the Synthetic Minority Over-
sampling TEchnique (SMOTE) [55], MLE, Least Square Estimation (LSE) [56], Weibull [57]
probability plot, regression of the range of medians with the Benard approximation, and
even combine methods, see [58,59]. Bayesian estimators [60] and other types of linear
estimators [61] have also been used.

At the same time, the repair and preventive replacement average times and the
cost and income average of each type of intervention (corrective or preventive) are also
calculated. This last type of data generally poses more difficulties to obtain than to calculate
it. However, despite not being as obvious as the calculation of the previous means, the
calculation of the failure distribution function can lead to significant management errors,
mainly due to the lack of coherence of the starting data. When these failure data are
right–censored, due to the performance of preventive maintenance, poor optimisation
of the preventive interval will be achieved. This article focuses on the influence of the
maintenance management data (first group) to determine the distribution function to
perform the preventive interval optimisation calculations.

In this research, a reduced number of data will be used, with which we will obtain an
exact solution for the optimal preventive interval. If we had used a large number of data, as
is the case with information collected online through sensors, the result would have been
the same (exact solution). Nevertheless, in both cases, as will be shown, the results will be
far from the optimal solution.

The equipment was failing and was repaired, with few cases of preventive interven-
tions (when the scheduled time according to predetermined maintenance was reached),
which also lasted for a few hours of operation. This case represents a situation where the
censorship was practically nonexistent, and the observed distribution function was very
close to the real one. On the other hand, Tables 3 and 4 represent the failure and preventive
data when a predetermined preventive threshold was established at 1000 h of operation. In
this second case, the behaviour of the O-rings would not be known beyond 1000 h. In both
cases, it does make sense to estimate the behaviour beyond the predetermined threshold
or to analyse the differences between the optimum intervals in both cases. Therefore, a
procedure to obtain estimations from the second case closer to those obtained for the first
one can be distilled. Looking to gather more information, the following procedure was
adopted:

• From the failure data and preventive maintenance data collected in Tables 3 and 4, the
observed function was calculated applying the range of medians method and using
the Benard approximation.

• From the observed function, the theoretical Weibull function that fit the best was deter-
mined. Then, the least-squares method was used to obtain the theoretical function’s
two or three parameters.

• Subsequently, the theoretical function was used to optimise the preventive interval
economically.

In Figure 2, the procedures for the data in Tables 3 and 4 are summarised. The Weibull
failure distribution function that best fit the observed function had two parameters, the
shape parameter with value 1.88 and a scale parameter (characteristic life) with value
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3603. These data were very different from the data obtained for the case of uncensored
data and would give rise to a very different preventive interval. The detailed process for
the data in Tables 1 and 2 can be verified in Sánchez-Herguedas et al. [42]. The Weibull
functions adjusted to the uncensored data were, in that case, W(2.36, 1317, 0) and W(1.95,
1202, 117), where the first value corresponded to the shape parameter, the second to the
scale parameter, and the third to the guaranteed life parameter.

Figure 2. Weibull distribution function obtained from the observed function, which has been deter-
mined by Median Rank Regression (MRR) procedure and the Benard approximation.

2.3. Semi-Markov Maintenance Model with Returns for a Finite Period

To study the behaviour of O-rings concerning failure, we need a mathematical model
that reflects this behaviour, such as the semi–Markovian model of three states, which is
used with the data that appear in Tables 1 and 2. This model applies to the predetermined
preventive maintenance of much industrial equipment, since it contains the two most
representative maintenance states, the state of the equipment when corrective maintenance
is performed after a failure (State S2) and the state of the equipment when preventive
maintenance is performed after a predetermined number of operating hours (State S3). In
these two cases analysed, the data correspond to preventive intervals of 4000 and 1000 h
of operation, respectively. State S1 corresponds to the period in which the equipment is
performing its required function. In this model, the equipment and others with the same
characteristics evolve over time, changing the state according to the law of probability.
When the system is in the operational state, the probability of equipment failure is dis-
tributed as a Weibull distribution. If the equipment fails, the system goes to the corrective
state (S2) and develops a corrective intervention. Suppose the equipment does not fail
after a time τ, the system transitions to the preventive state, developing a preventive
intervention. Once these maintenance interventions (corrective and preventive) have been
carried out, the system returns to its operational state. Both types of interventions have
associated costs.

On the other hand, during the operational state, the equipment generates income. Over
time, these costs and income are accumulated in a variable called the average accumulated
return, V(m). The optimisation of this variable will allow the calculation of the optimal
preventive interval, τ0. These transitions between states and the accumulation of returns
are graphically expressed in Figure 3.
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Figure 3. Transition process between states and accumulation of returns.

2.4. Formulating a Difference Equation System for Average Accumulated Return

The model that reflects the behaviour of the system is a semi–Markovian model.
The variable to optimise is the average accumulated return in the successive transitions
between states. In m transitions, starting from state i, the system accumulates m returns,
which added to their respective signs (+ for income and − for costs) will constitute the
accumulated return Qi(m) in m transitions from state i. For each value of i and m, the
accumulated return is a random variable because once the initial state is determined, the
next state is unpredictable, as well as the following states. Thus, in m transitions, the system
can evolve in many ways. For this reason, it is interesting to know the average accumulated
return instead of the accumulated return itself.

Let vi(m) = E(Qi(m)) be the average accumulated return in m transitions when the
system starts from the initial state i. To calculate vi(m), a difference equation is constructed,
separating the m transitions into two stages. The first stage is the one constituted by the
transition from the initial state i to the next state j. As the second state can be any of the
states of the system, the return vi(1) in a single transition is a random variable that can
reach the values ri1(1), ri2(1), · · · , rin(1), with the respective probabilities pi1, pi2, · · · , pin.
The average return in that transition can be formulated as follows:

vi(1) =
n

∑
j=1

rij(1) · pij. (1)

Now, the process continues with the remaining m − 1 transitions. Once the first
transition has been made, the system is placed in a state called j, where j takes one of the
values 1, 2, 3, · · · , n. The average accumulated return vj(m − 1) in the following transitions
is a random variable that can reach the values v1(m − 1), v2(m − 1), · · · , vn(m − 1), with
probabilities of pj1, pj2, · · · , pjn, respectively, which remain constant throughout the m
transitions, since the process is homogeneous. Therefore, the expected value of the return
of the remaining m − 1 transitions can be formulated as: vj(m − 1)) = ∑n

q=1 vj(m − 1) · pjq.
We conclude that the expected average return of the system in m transitions is calcu-

lated according to Equation (2):

vi(m) = vi(1) + vj(m − 1) · pj = vi(1) +
n

∑
q=1

vj(m − 1) · pjq (2)

The vector V(m) is defined as V(m) = (v1(m), v2(m), · · · , vn(m))t, where the super-
script t indicates the transpose in the matrix sense. This last equality can be written as a
difference equation:

V(m) = V(1) + P · V(m − 1) (3)

where P is the matrix of transition probabilities. The Equation (3) gives the average
accumulated return in m transitions from any possible starting state i.
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2.5. Solving the System of Difference Equations by Applying Transforms Z

Solving this difference equation requires the use of z transform and Laurent’s series.
To reach its resolution, it is necessary to include the data and functions involved in the
calculation: distribution functions of the time spent in each state, the returns for each state,
and the matrices that describe the process.

Time-related probabilistic functions for the tree states are as follows:

• F(t) is the Cumulative Distribution Function (CDF) of equipment failures, and f(t) is
the Probability Density Function (PDF). Based on the discussion in Section 2.3, we will
use the three-parametric Weibull distribution.

• G(tc) is the distribution function of the time the equipment remains under corrective
maintenance and g(tc) is its probability density function.

• H(tp) is the distribution function of the time that the equipment remains under
preventive maintenance and h(tp) is its probability density function.

Returns (costs for corrective and preventive states and income from operational state)
are as follows:

• R1, income per time unit that the system remains in State 1 (S1: Operational), 6 e/h.
• R12, the cost of transition from State 1 to State 2, −4320 e.
• R13, the cost of transition from State 1 to State 3, −1 e.
• R2, the cost per time unit that the system remains in State 2 (S2: Corrective), −95 e/h.
• R21, cost of transition from State 2 to State 1, −620 EUR.
• R3, the cost per time unit that the system remains in State 3 (S3: Preventive), −82 e/h.
• R31, the cost of transition from State 3 to State 1, −620 e.

Matrices to describe the process are as follows:

• P, the transition probability matrix between states (pij is the probability of going from
State i to j).

• F, stay time matrix (Fij is the average time in State i before the system goes to State j).
• R, returns matrix, where rij = Ri + Rij.

With these data, making the z-transform of V(m + 1) = V(1) + P · V(m), during the
calculation, it is required to determine the matrix I − z−1P to reach Equation (4).

Z[V(m)] =
1

z − 1
V(1) + (I − z−1P)−1 · V(1) (4)

Developing the matrix (I − z−1P)−1, the value of Z[V(m)] is reached and decomposed
into simple fractions for each of its terms Z[v1(m)], Z[v2(m)], and Z[v3(m)]. Subsequently,
using the appropriate Laurent expansion, the inverse z-transform of each one is calculated,
obtaining the equations that describe the average accumulated returns in each transition
for each of the starting states of the process, v1(m), v2(m), and v3(m). The full development
can be followed in Sánchez Herguedas et al. [62]. The average accumulated return in m
transitions starting in the operating state is described by Equation (5).

v1(m) =
1
4

[
(2m + 1 + (−1)m−1) ·

(
R1 ·

∫ τ

0
t · f (t)dt + R12 · F(τ) + (R1τ + R13) · (1 − F(τ))

)
+

(2m − 1 − (−1)m−1) ·
((

R2 ·
∫ ∞

0
tc · g(tc)dtc + R21

)
· F(τ)+(

R3 ·
∫ ∞

0
tp · h(tp)dtp + R31

)
· (1 − F(τ))

)] (5)

The average accumulated return in m transitions starting in the corrective state is
described by Equation (6). To deduce it, the same reasoning is followed as in the previous
case.



Sensors 2022, 22, 1432 10 of 18

v2(m) =
1
4

[
(2m − 1 − (−1)m−1) ·

(
R1 ·

∫ τ

0
t · f (t)dt + R12 · F(τ) + (R1 · τ + R13) · (1 − F(τ))

)
+

(2m + 1 + (−1)m−1) ·
(

R2 ·
∫ ∞

0
tc · g(tc)dtc + R21

)
+ (2m − 3 + (−1)m−1)·((

R3 ·
∫ ∞

0
tp · h(tp)dtp + R31

)
−
(

R2 ·
∫ ∞

0
tc · g(tc)dtc + R21

))
· (1 − F(τ))

] (6)

The average accumulated return in m transitions starting in the preventive state is
described by Equation (7).

v3(m) =
1
4

[
(2m − 1 − (−1)m−1) ·

(
R1 ·

∫ τ

0
t · f (t)dt + R12 · F(τ) + (R1 · τ + R13) · (1 − F(τ))

)
+

(2m + 1 + (−1)m−1) ·
(

R3 ·
∫ ∞

0
tp · h(tp)dtp + R31

)
+

(2m − 3 + (−1)m−1) ·
((

R2 ·
∫ ∞

0
tc · g(tc)dtc + R21

)
−
(

R3 ·
∫ ∞

0
tp · h(tp)dtp + R31

))
· F(τ)

] (7)

2.6. Optimisation of the Averaged Accumulated Return When Starting from the Operational State

Deriving and equalising to zero is possible to achieve the mathematical formula of
the preventive interval that economically optimises the average accumulated return for
each transition, starting from each of the states dv1(m)

dτ = 0, dv2(m)
dτ = 0, and dv3(m)

dτ = 0. The
results obtained for each state are:

For the case of starting in the operational state, Equation (8).

τα−1
0 =

βα

α
· −R1

R12 − R13 +
(2m−1−(−1)m−1)
(2m+1+(−1)m−1)

· (R2 · B + R21 − R3 · C − R31)
(8)

For cases of starting in the corrective and preventive states, Equation (9).

τα−1
0 =

βα

α
· −R1

R12 − R13 +
(2m−3+(−1)m−1)
(2m−1−(−1)m−1)

· (R2 · B + R21 − R3 · C − R31)
(9)

3. Results

Applying the procedure followed in Section 2.2 to obtain the Weibull distribution
function and Equation (8) to obtain the optimal preventive interval, the results expressed in
Table 5 are reached. The average time of corrective and preventive tasks is eight and seven
hours, respectively.

Table 5. Results of the cases analysed. Parameters of the Weibull distribution function and the
optimal preventive interval.

Weibull Optimal

Shape
Parameter α

Scale
Parameter β

Guaranteed
Life γ

Preventive
Interval τ0

Case A
(uncensored) 2.36 1317 0 1059

Case B 1.88 3603 0 10456
Case B-1 2.42 695 0 353
Case B-2 1.85 3729 0 11914
Case B-3 1.90 3541 0 9805
Case B-4 2.65 1939 0 1908
Case B-5 2.40 2265 0 2663
Case B-6 2.48 2150 0 2369
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Case A corresponded to the uncensored data presented in Tables 1 and 2. Case
B corresponded to the data with censorship, when the maintenance policy implies a
preventive change of the O-rings when reaching 1000 h of operation without failure or
when the equipment reaches a total of hours that is a multiple of 1000.

In this case, the Weibull function was altered. The failures were spread over a more
extended period, and 38% of them occurred after 3600 h. Obviously, this is not what
happened when the data were uncensored, and 62% of the failures appeared before reaching
1300 h. The value of the optimal preventive interval given by the model was very high,
10456. This is due to the flattening and lengthening that the failure distribution curve
suffered, as a consequence of the right-censored data. In cases B-2 and B-3, this situation
also occurred. Case B-2 considered a failure and the first preventive maintenance at 1000 h.
It affected the list of times considered in the Median Rank Regression method. Case B-3 was
similar to the previous one; it considered a failure of a preventive maintenance of 1000 h
ordered in half of the 87 preventives analysed in Table 4. If the calculations are made only
taking into account the failure data and ignoring the censored data at 1000 h, case B-1
is the situation where there is a tendency to group the failures. However, this grouping
occurred very early in the life of the O-rings and led to optimising the preventive interval
at 353 h. Another group of cases was made up of cases B-4, B-5, and B-6. The distribution
of failures was more concentrated, as in case A. However, it was concentrated towards a
greater number of hours. For this reason, the optimal preventive interval was established
around 2000 h, well above 1059 in case A. All the cases were far from optimal, failing to
find a strategy that was close to optimal.

Of course, using this censored data, the optimal preventive interval suitable for a
correct economic management of maintenance would not be found. Finding a reason that
explains this behaviour is not easy, but it could be thought that the data from A or B cases
are not adequate, which could be expected, for example, when two or more failure modes
are being mixed.

A further step can be taken in verification. The study can be carried out using the data
from case A, Tables 1 and 2. We can take the data from Table 1 and artificially censor the
failures greater than 1000 h. This is how Table 6 is generated. We are in a new scenario
C, where we are going to show three different cases. In the case of C-3, only failure
data less than 1000 h (42 failures) were considered. The case of C-2 employed failure
data up to 1000 h, and censorship corresponding to the cases that failed after more than
1000 h. A total of 41 censored data appeared due to the 41 failures produced over 1000 h.
This was intended to generate cases from case A. The data used in the C-3 case were those
of the first part of Table 6 (darkened part), and the data used in case C-2 were all the data
of Table 6.
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Table 6. Failure hours of the O-rings in the case A, adapted to a policy of preventive replacement
every 1000 h.

Time to Failure (Hours) and Censored Data (1000 h)

190 276 296 409 429 430
437 454 481 492 498 499
543 552 552 552 552 577
603 604 604 612 619 658
675 683 696 702 742 754
773 797 812 836 881 889
912 913 942 974 994 994
1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000

Using these data for cases C-2 and C-3, the results shown in Table 7 were obtained.
Case C-1 used data from Table 6 and, in addition, from Table 2.

Table 7. Results of the cases analysed. Parameters of the Weibull distribution function and the
optimal preventive interval.

Weibull Optimal

Shape
Parameter α

Scale
Parameter β

Guaranteed
Life γ

Preventive
Interval τ0

Case A (uncensored) 2.36 1317 0 1059
Case C-1

(1000+censored) 2.79 1149 0 822

Case C-2
(1000+censored) 3.34 715 0 418

Case C-3
(1000+censored) 2.76 1042 0 705

Case D-2
(900+censored) 2.94 991 0 656

Case C-3 involved an intense concentration of failures around 600 h of operation. The
optimal preventive interval was considerably reduced, settling at 418 h. However, case A-2
showed more expected behaviour. There was also a concentration of failures but around
1000 h. The optimal preventive interval increased considerably to 705 h. If cases A-3, A-2,
and A-1 are analysed as a whole, they showed a logical progression of the results.

Case D-2 corresponded to a new scenario D, where the data from modified Table 1 were
used censoring the data in the range of 400 to 2500 h of operation. Case D-2 corresponded
to artificial censorship at 900 h, in the same way that case C-2 corresponded to artificial
censorship at 1000 h.

The calculations were carried out for two transitions, starting from the operational state
v1(2). These cases were compared to obtain the economic differences using Equation (5),
which corresponded to the average accumulated return. The results are expressed in Table 8.
The fifth column represents the return per hour of operation for each case. It would be the
same in all even transitions.



Sensors 2022, 22, 1432 13 of 18

Table 8. Economic comparison of cases A, C-1, C-2, C-3, and D-2.

Cases

Average Return
of Two

Transitions v1(2)
(e)

Average
Transition (h)

Number of
Transitions

Average Return
(e/h)

Case A
(uncensored) 2174.36 899.5 2 1.209

Case C-1 (1000 +
censored) 1815.24 745.6 2 1.217

Case C-2 (1000 +
censored) 1388.05 647.0 2 1.073

Case C-3 (1000 +
censored) 530.29 402.7 2 0.658

Case D-2 (900 +
censored) 1308.91 610.4 2 1.072

4. Discussion

The results in Table 7 show that, when calculating the optimal preventive interval using
the formula of our model, its value was always less than the predetermined preventive
interval used (censorship). It is observed that, for a preventive interval adopted of 1000 h,
case C-1, the derived optimal preventive interval reached the value of 705 h, while, when
the preventive interval used was 900 h, case D-1, the optimal preventive interval reached
the value of 656 h.

If with the same data used for cases C-1 and D-1, we modify the value of the prede-
termined preventive interval used between the range of values 500–2500 h, the behaviour
of the optimal preventive interval shows a tendency to increase until reaching the value
899 when the preventive interval used was 2500 h, which was the case for which all fault
data were used (see Figure 4). Why would the value 1059 not be reached? This value was
not reached because, in these calculations, only the values in Table 2 were considered. This
value would have been reached in the calculations if all censored data were considered
(Tables 2 and 6). The increase in the optimal preventive interval between the D-1 case of
censorship to 900 h (656) and the case of 2500 h (899) was 27%. This value is comparable to
the 22.4% value obtained when verifying the increase in the optimal interval between case
A (1059) and case A-0 (822) using the data from Tables 2 and 6.

Figure 4. Optimal preventive interval values for case A failures when data are artificially censored.

In both cases and in other cases with different data, values close to 25% were obtained.
This is because the preventive intervals used were 1000 and 900 h, values very close to the
optimal 1059 and 899.

This value close to 25% is of particular interest, because it gives a reference value
for the possible variation of the preventive interval when the starting data are censored.
We have investigated and obtained a preventive interval of 1059 or 899 h, respectively.
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However, the maintenance manager does not know if their preventive interval used is close
to its optimal value (because they do not let their equipment work until failure). If the value
of the optimal interval that the maintenance manager obtains with the model is 30% less
than the interval used, the maintenance manager would have a preventive maintenance
policy with a high interval, which should be reduced. On the contrary, if the value obtained
from the model is 20% less than the interval used, the preventive maintenance would have a
low interval, which should be increased. This reduction or increase will be greater or lesser
depending on how far the value of the optimal interval obtained from the model was from
25% lower than the interval used, Figure 5. This provides the maintenance manager with a
forecast on the length of the optimal preventive interval and a decision rule to improve the
interval.

Figure 5. Values of the optimal preventive interval for the failures of case A when the data are
artificially censored.

In Figure 4, an abrupt change in the direction of the curve is observed. It can be seen
that for values greater than 700 h (point 700 on the abscissa), the curve experiences a change
in trend that is maintained until the end. This indicates that the behaviour of the fault
distribution function should be studied when the number of failures is very small compared
to a large number of censored data due to preventive maintenance. In this case, from values
above 75% of the right-censored value (value of the adopted preventive interval), we can
find values with which to obtain good to good results.

5. Conclusions

To carry out a study where the preventive interval is calculated, it is necessary to
have adequate failure data, eliminating from the study those failure data due to other
factors (for example, other failure modes). It is usually necessary to have uncensored
failure data to optimise the preventive interval, but these are rarely accessible. Most of
the data collected by maintenance managers are right-censored due to the performance
of predetermined preventive maintenance tasks. The inclusion of censored data in the
study introduces uncertainty in calculating the observed function, the theoretical function,
the average accumulated return, and the preventive interval. These censored data disturb
the calculation of the preventive interval, since they introduce uncertainty. The proposed
model allows maintenance managers to use the censored data to guide the modification of
the maintenance policy, by optimising the preventive interval, which will have an economic
improvement.

The following conclusions can be drawn from using our model’s formula to calculate
the preventive interval for right-censored data:

• If the optimal preventive interval obtained using the model is more than 30% lower
than the preventive interval used, the maintenance manager can decrease the interval
used.

• If the optimal preventive interval obtained is less than 20% less than the preventive
interval used, the maintenance manager can increase the interval used.
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• This increase or decrease in the value of the optimal preventive interval will be more
significant or less depending on how far the value obtained from the model is from
25% lower than the interval used.

This decision rule is of particular importance for the maintenance manager, since it
allows them to modify the preventive interval in the correct direction. If censored data are
used in the study, the optimal preventive interval increases as we also consider failure data
of longer duration (adopt longer preventive intervals). These results are equally relevant
regardless of the number of data considered when the number of failures is sufficient to
define a failure distribution function according to the behaviour of the physical asset.

This research will continue in the future along two different lines, the first one by
using other families of estimators and comparing the results, but the second one intends
to extend the model by considering a fourth state for the system. The intention is to
split the operational status between regular operational status and degraded operational
status, where maintenance would be required by either legal or business constraints forcing
consideration of its operation and whether in the new state the probabilistic function for
failure becomes different. In this way, it would be possible to enable a stronger alignment
between production and maintenance policies, where a more integrated perspective for the
business as a whole is envisaged.
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20. Młynarski, S.; Pilch, R.; Smolnik, M.; Szybka, J.; Wiązania, G. A model of an adaptive strategy of preventive maintenance of

complex technical objects. Eksploat. Niezawodn./Maint. Reliab. 2019, 22, 35–41. doi:10.17531/ein.2020.1.5.
21. White, J.R.; Widup, R. Factors to Consider When Determining Maintenance Intervals. IEEE Trans. Ind. Appl. 2014, 50, 188–194.

doi:10.1109/tia.2013.2288229.
22. Coria, V.; Maximov, S.; Rivas-Dávalos, F.; Melchor, C.; Guardado, J. Analytical method for optimization of maintenance policy

based on available system failure data. Reliab. Eng. Syst. Saf. 2015, 135, 55–63. doi:10.1016/j.ress.2014.11.003.
23. Zhao, X.; Cai, J.; Mizutani, S.; Nakagawa, T. Preventive replacement policies with time of operations, mission durations, minimal

repairs and maintenance triggering approaches. J. Manuf. Syst. 2020, 61, 819–829. doi:10.1016/j.jmsy.2020.04.003.
24. Zhao, X.; Chen, M.; Nakagawa, T. Periodic replacement policies with shortage and excess costs. Ann. Oper. Res. 2020.

doi:10.1007/s10479-020-03566-z.
25. Bunea, C.; Bedford, T. The effect of model uncertainty on maintenance optimization. IEEE Trans. Reliabil. 2002, 51, 486–493.

doi:10.1109/tr.2002.804486.
26. Mazzuchi, T.A.; van Dorp, J.R. A Bayesian expert judgement model to determine lifetime distributions for maintenance

optimisation. Struct. Infrastruct. Eng. 2012, 8, 307–315. doi:10.1080/15732479.2011.563084.
27. Zhu, J.; Wang, L.; Spiryagin, M. Control and decision strategy for a class of Markovian jump systems in failure prone manufactur-

ing process. IET Control. Theory Appl. 2012, 6, 1803–1811. doi:10.1049/iet-cta.2011.0302.
28. van Dorp, J.R.; Mazzuchi, T.A. Three-point lifetime distribution elicitation for maintenance optimization in a bayesian context.

In International Series in Operations Research & Management Science; Springer International Publishing: Cham, Switzerland, 2021;
pp. 147–177. doi:10.1007/978-3-030-46474-5_6.

29. Fouladirad, M.; Paroissin, C.; Grall, A. Sensitivity of optimal replacement policies to lifetime parameter estimates. Eur. J. Oper.
Res. 2018, 266, 963–975.

https://doi.org/10.1016/j.ress.2008.06.002
https://doi.org/10.3390/s18093171
https://doi.org/10.1088/1757-899x/309/1/012128
https://doi.org/10.1007/978-3-030-55732-4_23
https://doi.org/10.1007/978-3-030-55732-4_23
https://doi.org/10.3390/electronics10202553
https://doi.org/10.6036/10037
https://doi.org/10.6036/9448
https://doi.org/10.1016/j.ijepes.2014.12.066
https://doi.org/10.17531/ein.2017.1.19
https://doi.org/10.1587/transfun.e100.a.629
https://doi.org/10.3390/su13010216
https://doi.org/10.17531/ein.2020.1.5
https://doi.org/10.1109/tia.2013.2288229
https://doi.org/10.1016/j.ress.2014.11.003
https://doi.org/10.1016/j.jmsy.2020.04.003
https://doi.org/10.1007/s10479-020-03566-z
https://doi.org/10.1109/tr.2002.804486
https://doi.org/10.1080/15732479.2011.563084
https://doi.org/10.1049/iet-cta.2011.0302
https://doi.org/10.1007/978-3-030-46474-5_6


Sensors 2022, 22, 1432 17 of 18

30. Wang, C.; Guo, J.; Shen, A. Sensitivity analysis of censoring data from component failure analysis and reliability evaluation for
the aviation internet of things. Comput. Commun. 2020, 157, 28–37. doi:10.1016/j.comcom.2020.04.003.

31. Hu, Q.; Yue, W. Optimal replacement of a system according toa semi-Markov decision process in a semi-Markov environment.
Optim. Methods Softw. 2003, 18, 181–196. doi:10.1080/1055678031000111803.

32. Gualeni, P.; Perrera, F.; Raimondo, M.; Vairo, T. Accessibility for maintenance in the engine room: Development and application
of a prediction tool for operational costs estimation. Ship Technol. Res. 2022. doi:10.1080/09377255.2021.2020949.

33. Wu, B.; Cui, L. Reliability analysis of periodically inspected systems with competing risks under Markovian environments.
Comput. Ind. Eng. 2021, 158, 107415. doi:10.1016/j.cie.2021.107415.

34. Tran, H.; Setunge, S.; Shi, L. Markov Chain–Based Inspection and Maintenance Model for Stormwater Pipes. J. Water Resour. Plan.
Manag. 2021, 147, 04021077. doi:10.1061/(asce)wr.1943-5452.0001469.

35. Wu, B.; Maya, B.I.G.; Limnios, N. Using semi-Markov chains to solve semi-Markov processes. Methodol. Comput. Appl. Probab.
2021, 23, 1419–1431.

36. Hu, J.; Shen, J.; Shen, L. Periodic preventive maintenance planning for systems working under a Markovian operating condition.
Comput. Ind. Eng. 2020, 142, 106291. doi:10.1016/j.cie.2020.106291.

37. Nie, R.; He, S.; Liu, F.; Luan, X. Sliding mode controller design for conic-type nonlinear semi-Markovian jumping systems of
time-delayed Chua’s circuit. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 2467–2475.

38. de Jonge, B.; Scarf, P.A. A review on maintenance optimization. Eur. J. Oper. Res. 2020, 285, 805–824.
39. Ruschel, E.; Santos, E.A.P.; Loures, E.d.F.R. Industrial maintenance decision-making: A systematic literature review. J. Manuf.

Syst. 2017, 45, 180–194.
40. Li, D.; Li, Q.; Mingcheng, E.; Jiang, Z.; Ma, J. Failure analysis of coupler knuckle considering truncated and censored lifetime data.

In Proceedings of the 2019 Prognostics and System Health Management Conference (PHM-Qingdao), Qingdao, China, 25–27
October 2019; IEEE: Piscataway, NJ, USA , 2019; pp. 1–5.

41. Taghipour, S.; Banjevic, D. Trend analysis of the power law process using Expectation–Maximization algorithm for data censored
by inspection intervals. Reliab. Eng. Syst. Saf. 2011, 96, 1340–1348. doi:10.1016/j.ress.2011.03.018.

42. Sánchez-Herguedas, A.; Mena-Nieto, A.; Rodrigo-Muñoz, F. A new analytical method to optimise the preventive maintenance
interval by using a semi-Markov process and z-transform with an application to marine diesel engines. Reliab. Eng. Syst. Saf.
2021, 207, 107394. doi:10.1016/j.ress.2020.107394.

43. Wen, Y.; Rahman, M.F.; Xu, H.; Tseng, T.L.B. Recent Advances and Trends of Predictive Maintenance from Data-driven Machine
Prognostics Perspective. Measurement 2021, 187, 110276.

44. Wu, B.; Cui, L.; Fang, C. Reliability analysis of semi-Markov systems with restriction on transition times. Reliab. Eng. Syst. Saf.
2019, 190, 106516. doi:10.1016/j.ress.2019.106516.

45. Yi, H.; Cui, L.; Shen, J.; Li, Y. Stochastic properties and reliability measures of discrete-time semi-Markovian systems. Reliab. Eng.
Syst. Saf. 2018, 176, 162–173. doi:10.1016/j.ress.2018.04.014.

46. Klein, J.P.; Moeschberger, M.L. Survival Analysis: Techniques for Censored and Truncated Data; Springer: Cham, Switzerland, 2003;
Volume 1230.

47. Shen, A.; Guo, J.; Wang, Z.; Jia, W. A novel reliability evaluation method on censored data. J. Mech. Sci. Technol. 2017,
31, 1105–1117. doi:10.1007/s12206-017-0209-y.

48. Ahmed, E.A. Estimation of some lifetime parameters of generalized Gompertz distribution under progressively type-II censored
data. Appl. Math. Model. 2015, 39, 5567–5578. doi:10.1016/j.apm.2015.01.023.

49. Teimouri, M.; Hoseini, S.M.; Nadarajah, S. Comparison of estimation methods for the Weibull distribution. Statistics 2013,
47, 93–109. doi:10.1080/02331888.2011.559657.

50. Genschel, U.; Meeker, W.Q. A Comparison of Maximum Likelihood and Median-Rank Regression for Weibull Estimation. Qual.
Eng. 2010, 22, 236–255. doi:10.1080/08982112.2010.503447.

51. Ranjan, R.; Sen, R.; Upadhyay, S.K. Bayes analysis of some important lifetime models using MCMC based approaches when the
observations are left truncated and right censored. Reliab. Eng. Syst. Saf. 2021, 214, 107747. doi:10.1016/j.ress.2021.107747.

52. Balakrishnan, N.; Mitra, D. Left truncated and right censored Weibull data and likelihood inference with an illustration. Comput.
Stat. Data Anal. 2012, 56, 4011–4025. doi:10.1016/j.csda.2012.05.004.

53. Ferreira, L.A.; Silva, J.L. Parameter estimation for Weibull distribution with right censored data using EM algorithm. Eksploat.
Niezawodn./Maint. Reliab. 2017, 19, 310–315. doi:10.17531/ein.2017.2.20.

54. Joarder, A.; Krishna, H.; Kundu, D. Inferences on Weibull parameters with conventional type-I censoring. Comput. Stat. Data
Anal. 2011, 55, 1–11. doi:10.1016/j.csda.2010.04.006.

55. Starling, J.K.; Mastrangelo, C.; Choe, Y. Improving Weibull distribution estimation for generalized Type I censored data using
modified SMOTE. Reliab. Eng. Syst. Saf. 2021, 211, 107505. doi:10.1016/j.ress.2021.107505.

56. Elmahdy, E.E. A new approach for Weibull modeling for reliability life data analysis. Appl. Math. Comput. 2015, 250, 708–720.
doi:10.1016/j.amc.2014.10.036.

57. Zhang, L.; Xie, M.; Tang, L. Bias correction for the least squares estimator of Weibull shape parameter with complete and censored
data. Reliab. Eng. Syst. Saf. 2006, 91, 930–939. doi:10.1016/j.ress.2005.09.010.

58. Musleh, R.M.; Helu, A. Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study.
Reliab. Eng. Syst. Saf. 2014, 131, 216–227. doi:10.1016/j.ress.2014.07.006.

https://doi.org/10.1016/j.comcom.2020.04.003
https://doi.org/10.1080/1055678031000111803
https://doi.org/10.1080/09377255.2021.2020949
https://doi.org/10.1016/j.cie.2021.107415
https://doi.org/10.1061/(asce)wr.1943-5452.0001469
https://doi.org/10.1016/j.cie.2020.106291
https://doi.org/10.1016/j.ress.2011.03.018
https://doi.org/10.1016/j.ress.2020.107394
https://doi.org/10.1016/j.ress.2019.106516
https://doi.org/10.1016/j.ress.2018.04.014
https://doi.org/10.1007/s12206-017-0209-y
https://doi.org/10.1016/j.apm.2015.01.023
https://doi.org/10.1080/02331888.2011.559657
https://doi.org/10.1080/08982112.2010.503447
https://doi.org/10.1016/j.ress.2021.107747
https://doi.org/10.1016/j.csda.2012.05.004
https://doi.org/10.17531/ein.2017.2.20
https://doi.org/10.1016/j.csda.2010.04.006
https://doi.org/10.1016/j.ress.2021.107505
https://doi.org/10.1016/j.amc.2014.10.036
https://doi.org/10.1016/j.ress.2005.09.010
https://doi.org/10.1016/j.ress.2014.07.006


Sensors 2022, 22, 1432 18 of 18

59. Jia, X.; Wang, D.; Jiang, P.; Guo, B. Inference on the reliability of Weibull distribution with multiply Type-I censored data. Reliab.
Eng. Syst. Saf. 2016, 150, 171–181. doi:10.1016/j.ress.2016.01.025.

60. Ducros, F.; Pamphile, P. Bayesian estimation of Weibull mixture in heavily censored data setting. Reliab. Eng. Syst. Saf. 2018,
180, 453–462. doi:10.1016/j.ress.2018.08.008.

61. Jabeen, R.; Ahmad, A.; Feroze, N.; Gilani, G.M. Estimation of location and scale parameters of Weibull distribution using
generalized order statistics under type II singly and doubly censored data. Int. J. Adv. Sci. Technol. 2013, 55, 67–80.

62. Sánchez Herguedas, A.; Crespo Márquez, A.; Rodrigo Muñoz, F. Optimizing preventive maintenance over a finite planning
horizon in a semi-Markov framework. IMA J. Manag. Math. 2020, 33, 75–99. doi:10.1093/imaman/dpaa026.

https://doi.org/10.1016/j.ress.2016.01.025
https://doi.org/10.1016/j.ress.2018.08.008
https://doi.org/10.1093/imaman/dpaa026

	Introduction
	Materials and Methods
	Real Case. Data Selection and Information Processing
	Determination of the Failure Distribution Function
	Semi-Markov Maintenance Model with Returns for a Finite Period
	Formulating a Difference Equation System for Average Accumulated Return
	Solving the System of Difference Equations by Applying Transforms Z
	Optimisation of the Averaged Accumulated Return When Starting from the Operational State

	Results
	Discussion
	Conclusions
	References

