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Abstract

Advances in Computer Vision have helped the manufacturing industry achieve superior quality norms with a minimal inspection time due to
optical quality surveillance systems. These inspections most often take place at the end of the value chain, insuring the quality standards of the
manufactured pieces. The downside to this approach is that defective parts can still continue through the value chain. Wasting a lot of resources
and increasing the lead time. To avoid this drain, the machines in the value stream should only produce error-free parts or at least detects them. An
optical quality inspection system at every production step would add a high price cost. For this reason, existing sensors should detect unwanted
states. With structured data, a person with specific domain knowledge could rate this. This is a tough task, as a lot of unknown factors can influence
each step. Therefore, this paper proposes steps to improve quality in rotogravure manufacturing using deep learning. Further research will be
conducted in the coming months to expand these results. The proposed procedures will be applied to live data of a rotogravure manufacturing site

and the effectiveness of this approach will be analysed.

© 2020 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the FAIM 2021.

Keywords: Quality improvement; Quality control and inspection; Jidoka; Industry 4.0; Machine learning

1. Introduction

Today’s manufacturing industry is increasingly subject to an
international competition, because of falling transit and com-
munication costs, and a faster transportation of goods [1]. Prod-
ucts have become more standardized, as has the technology to
produce these [2]. Adding to this, it is becoming more and more
important for companies to cut the environmental footprint by
reducing energy and material usage. Only through this is a sus-
tainable use of resources achievable [3]. These conditions in-
tensify the pressure to reduce the costs, but also to increase the
speed of the delivered goods. An enormous factor to fulfill these
demands will be that only high-quality items are produced.

Optical quality control systems have helped improve the de-
livered products condition in many fields of manufacturing in
the last years. Through the possibilities of digitalization, ad-
vances in imaging hardware, and Computer Vision (CV). The
sectors concerned include a wide range from food [4, 5] to solar
cell [6] and fabric [7] inspection. The check is usually only per-
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formed at the end of production. Based on the generally high
costs of an optical quality control system. Therefore, a defec-
tive part still travels along the value stream, and is remade or
if possible fixed. Depending on the defect and the point during
the production, this can have significant effects on the lead time
and the waste.

While the general belief is common, that higher automa-
tion naturally improves the quality in manufacturing, the ef-
fects aren’t always positive and at least on its own shouldn’t
be seen as a sufficient step towards a higher quality in manufac-
turing [8]. Sometimes when the complex interplay between ma-
chine and human operator isn’t fully taken into consideration,
this can even expand the problems because of the complexity of
the task [9]. This allows two general strategies on how to han-
dle the complexity to improve the quality that don’t demand to
and shouldn’t be applied on their own.

The first is to reduce the complexity of a process step by
analyzing it and using tools such as lean management (LM)
[10, 11, 12]. The aim of LM is to find less complex ways of
achieving the planned results [13, 14, 15, 16, 17, 18, 19]. The
non-value adding steps are removed and continuous improve-
ment becomes a focus.
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Another approach is to use tools such as artificial intelli-
gence (Al), which can handle a higher complexity as the prob-
lem it controls. Al aims to show intelligence by machines [20].
This includes a wide range of sub-fields with an even wider
range of goals. A big sub-field of Al is machine learning,
through which it is possible to learn correlations and patterns
from sample data. Within machine learning, deep learning has
seen an immense surge in the last years. Through it, it has been
possible to solve many complex challenges that assumed to be
impossible to solve even with earlier Al tools [21].

The third option is to view LM and AI not merely as side-
by-side approaches, but as complementary and integrated parts
of each other. In this hybrid, both contribute their strengths. Al
can improve the decision-making process by offering new in-
sights. The LM framework is used to incorporate these results.
Through this, the human still stays in the focus and prevents the
system from becoming a black box.

As Al has become an ubiquitous tool in production, it is be-
coming an essential building block for many current improve-
ments. One of these developments can be found under the term
smart manufacturing [22]. In simple terms, it can be summa-
rized as methods that use resulting data from manufacturing to
improve the performance. This also comprises several subareas
such as predictive maintenance, quality control [23] and quality
improvement, which will be the key focus in this paper.

This paper aims to further examine the possibilities how
Deep Learning (DL) can be employed for quality improvement
by proposing steps in rotogravure manufacturing using DL. The
results are produced on the example of the rotogravure man-
ufacturing industry but can also be adapted to other areas of
manufacturing.

2. Rotogravure manufacturing
2.1. Overview

Rotogravure cylinders are one of the most important printing
methods in the packaging industry and were developed in the
early 1890s [24]. Belonging to the family of intaglio printing,
which has an even longer history dating back to the fifteenth
century, making them one of the oldest printing technologies
[25]. The cylinder has cells in the cylinder (Figure 1), that fill
with ink. This ink gets released during printing, as seen in Fig-
ure 2, by being pressed against an impression cylinder. In its
current form, rotogravure cylinders still work through the same
principle as they did in the beginnings. Yet, manufacturing ro-
togravure cylinders has experienced many advances through the
help of digitalization.

This has allowed the rotogravure cylinder to keep its place as
the most important printing method when high print quality and
long print runs, starting at a run of at least 100.000 units [26],
are needed. These cases have been decreasing. More printing
designs are only used for shorter times. This in turn increases
the need to also become relevant for smaller printing runs.

Although manufacturing rotogravure cylinders has this ex-
tensive history, the production processes are still prone to errors
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Fig. 1. Surface of an electromechanically engraved cylinder.
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Fig. 2. Rotogravure printing.

because of the many influencing parameters and the required
high accuracy. Therefore, there is enough room for Machine
Learning (ML) techniques, and DL in particular to be applied
and to help improve the processes. As the first step to the anal-
ysis, the production steps are described.

2.2. Production process

The general production process is highly standardized. The
key steps can be seen in Figure 3. Although the core of the
printing cylinder is made of a steel plate that is enclosed by a
copper layer, the standard process usually starts with used print-
ing cylinders. These get dechromed and decoppered (3-1). After
this, the new production can start. Before a fresh copper layer
can be added, the cylinder is degreased (3-2) to remove any
kind of contaminant that could have negative effects on the fur-
ther production steps. If this doesn’t happen correctly or if any
dirt remains on the cylinder surface, this can lead to defects.

In the next step, a layer of copper is added in a galvanic pro-
cess (3-3). Because of the earlier production step, and through a
multitude of influencing parameters of the coopering machine,
holes in the copper surface can emerge. These are already vis-
ible in this step. Still many more difficulties can arise in this
process step, that aren’t visible by the eye. The major points are
the copper hardness or a contamination of the copper that could
lead to further problems in the next production step.

The following step adds the desired illustration to the print-
ing cylinder (3-4). Depending on the requirements, a multitude
of methods are available to achieve this goal. The most used
method is the electromechanical engraving, that uses a diamond
stylus to remove small cells of varying sizes of copper from the
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. 1. Dechroming and
decoppering

2. Degreasing

3. Copper plating

4. Image transfer

5. Chrome plating

Fig. 3. The main steps of rotogravure cylinder manufacturing. On the left the
on-top view of the cylinder. In the middle a cross section of the cylinder and on
the right the description.

surface, that fill with ink during printing and release it on the
printing substrate with the help of a doctor blade and a rotary
press. Also, other methods are available, from which many use a
laser directly or indirectly to form cells on the cylinder surface.
In scarce cases, engraving can even be done by hand. During
the process, many kinds of defects can emerge. For the elec-
tromechanical engraving this could, for example, be a broken
or fractured stylus or defects of the cylinder surface.

In the last step, the imaged rotogravure cylinder receives a
chrome plating (3-5). The reason being that a copper surface
wouldn’t be hard enough for the pressure needed during the
printing process. In this last step, it is also possible that defects
such as holes on the cylinder surface can occur. A contamina-
tion of the cylinder surface or chrome could cause such flaws.

2.3. Evaluating potential savings

The potential savings of energy, resources, and time depend
on multiple factors. In rare cases it is possible that defects of
a production step are found before the last quality check. For
an easier comparison and as the percentage is currently small,
in the following it is considered that the defects only get found
after chroming in the last control step.

The two major factors for the environmental consequences
are the impacts of a defect and how often it occurs. The cost of
the defect can be measured by the impact on the various forms
of environmental waste, but also on further kinds of drain used
from a management point of view. To a specific degree, most in-
clude environmental waste. Perhaps every kind of waste found
in LM to a certain extent impact the environmental waste, as
it has been shown, that prior lean experience can be an impor-
tant predecessor for environmental management practices [27].
Still, both environmental waste and lean waste can sometimes

even stand in conflict [28]. Therefore, in the following, the view
on the waste is through the lens of environmental waste.

The environmental waste of a defect needs to be measured
by examining the impact it has on the production compared to
a defect free item. Only viewing the environmental waste, it is
composed of all the material and energy that is needed to fix the
defect. For some types of defects, it’s possible to fix a mistake
by correcting the current production step. For other defects it
can be necessary, that also earlier steps have to be repeated as
the defect can not be fixed.

To get a complete picture, it can be an interesting challenge
to estimate a realistic potential of how much a production step
could be improved. As this can usually just be an educated
guess and could lead to falsely dismissing production steps that
have a high potential, the basis of deciding which production
step has the highest potential to be improved, should only be
based on the resulting waste of a production step.

2.4. Potential savings of the production steps

In the following, the results using the discussed methods for
determining the potential savings of every manufacturing step
are examined. Defects are usually found at the end. Therefore,
the root cause for the defect can’t always be determined. This
raises the difficulty of finding the source of a defect, and in
which production step it occurs. Also, it increases the difficulty
of determining the exact potential waste savings for every pro-
duction step. Because of this and to show generic data, in the
following relative figures in the form of a proportion of the total
waste of each production step between 0-1 are given.

During dechroming and decoppering, the risk for resulting
defects are very low. Although imperfections in the resulting
copper layer can exist, these neither significantly interfere with
the next production steps nor directly lead to defects on the
cylinder surface, as long as these aren’t extreme. A rare de-
fect could be that the decoppering hasn’t been deep enough,
and cells of the earlier engraving are still visible. Although a
rare case, this would cause immense waste, as all production
steps would have to be repeated to produce a defect free ob-
ject. Therefore, the proportion of defective items through this
production step are rated with 0.1 in the following evaluation.

The degreasing step is also a low risk production step. Nev-
ertheless, big contaminations could lead to dramatic conse-
quences, as the copper wouldn’t be able to form a solid layer.
The degreasing step still only contributes to 0.1 of the added
waste.

The coopering phase has the highest associated risk for re-
sulting defects. During this production step, the major risks are
holes in the cylinder surface. This is also confirmed in [29] as
the highest waste producing category for rotogravure manufac-
turing. Sizeable holes in the surface could print. Even if these
are smaller or the copper hardness isn’t consistent, this could
lead to defects in the next production phase. Hence this produc-
tion step adds a proportion of 0.45 to the total.

For the engraving phase, the complexity of defects is the
highest, as the cells need to be placed with a very high accu-
racy and also with a consistent depth across the complete cylin-
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der surface. As a result, the range of unique types of defects is
very high whereas the most common is the fracture of the stylus
[30]. But also other defects such as distortions of the engraved
image in any direction or pin holes are possible. As a result, this
production step comprises 0.25 to the total waste.

In the last step, the chroming can also add defects to the item.
These could be small holes or an incomplete chrome plating.
Due to it being the last step and as most of the defects result-
ing from this production step can be fixed be dechroming and
rechroming the cylinder, the total waste is manageable. This
step is responsible for 0.1 of the total waste.

Because of the analysis, the highest waste saving potential
can be seen in the copper plating phase. This is the produc-
tion step responsible for the highest amount of waste. Also, if
defects are found at this stage, repairing the item has a much
lower cost than in later stages. As an added benefit, it can help
in analyzing the origin of a defect.

2.5. Methods for improving quality control

The previous analysis shows the best next target point for the
future work. The implementation allows for various strategies.
In this section three alternatives are described and rated based
on the costs and saving potentials.

I II

1. Dechroming and
decoppering

IT1

1. Dechroming and
decoppering

1. Dechroming and
decoppering

Data basedcheck

2. Degreasing 2. Degreasing 2. Degreasing

Data basedgheck

3. Copper plating 3. Copper plating 3. Copper plating

Visual inspection Datg basedcheck

4. Image transfer 4. Image transfer 4. Image transfer

Visual'inspection Datg basedgheck

5. Chrome plating 5. Chrome plating 5. Chrome plating

Visualinspection Visualinspection Visualiinspection

Fig. 4. Three different possible quality checks for rotogravure manufacturing.
The currently deployed quality check on the left. An alternative with more vi-
sual inspections in the middle and a data based method on the right.

The different alternatives are visualized in Figure 4. On the
left (I) the quality check deployed at the investigated manufac-
turing plant can be seen, where only one visual inspection at the
end is used, that uses algorithms from computer vision and Al
to detect defects [23]. This kind of quality check has its equiv-
alents in other manufacturing areas, such as for laser welding
[27] or metal additive manufacturing [31]. Though visual in-
spection systems show outstanding results for the final quality

check, as discussed, this still doesn’t prevent internal waste to
accumulate, as defects are usually only found at the end.

The first alternative to the current workflow (Figure 4-II)
uses multiple instances of the visual inspection system. Al-
though it is possible to use a visual inspection system after ev-
ery production step, only the three steps with high waste were
chosen for this alternative. Nevertheless, a visual inspection
system could be used for each step. The visual inspection sys-
tem could ensure that only items with no defects are passed on
to the next production step. This would make it possible to fix
or discard an item without producing waste by adding the next
production steps to the already broken item. A downside to this
approach is the strong cost point for the visual inspection sys-
tems and that only the symptoms in the form of defective items
are considered and not the root cause in form of a not optimized
production step that only produces defect free items.

The second alternative (Figure 4-I1T) doesn’t use any further
visual inspection systems. Quality checks are data based. De-
tails on feasible ways how this can be achieved are discussed
in Section 3. Depending on the achievements of the data based
checks, it would also be possible to replace the final visual in-
spection system. This alternative would reduce the costs for
needed hardware and could help analyze the core problems in
each process step.

In the long term, the correlation between the defects found
by the inspection systems and the operational parameters will
make it possible to address 4-I1I, following the LM culture.

3. Deep Learning for rotogravure manufacturing
3.1. Data based alternatives

DL appears to be a promising tool to improve the manufac-
turing quality. Still, other data based strategies should be taken
into consideration. Through the rise of data generation and col-
lection, many types have been developed over the years. All
coming with advantages and disadvantages. Though in general
terms this includes LM focused systems such as Six Sigma or
Kaizen [32], the further focus lies on automated techniques that
process data and give an output which is used to improve the
quality.

A solution to a problem should never be more complex than
it needs to be. Therefore, a first step should almost always
be the visualization of the data and if possible simple models
could be developed and the correlations of the factors checked.
Through this, big influencing factors can already be determined.
Domain-knowledge can be a huge plus in this stage. Unfortu-
nately, this approach is not sufficient for most cases as a man-
ufacturing system is usually dynamic, uncertain, and complex
[33]. With the help of machine learning, it is possible to model
more complex systems. This gives an enormous advantage as
most processing steps have many influencing parameters that
result in a high dimensional relation.

Most ML algorithms can be grouped into two major cat-
egories. Supervised and unsupervised learning. Unsupervised
learning is used to detect patterns in unlabeled data sets and
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generally needs little supervision by a human. Supervised learn-
ing however depends on a labeled data-set and learns to find the
connecting patterns between input and label. It learns from the
examples provided. If the data and the use-case make it possi-
ble, supervised learning usually achieves better results.

Through the data won from the vision based systems it is
possible to label the data with the information of existing de-
fects. This makes it possible to use supervised learning if the
use-case allows it.

The more concrete groups that are promising for the planned
results are classification and regression. Though the exact use-
case depends on the planned achievements, which will be fur-
ther discussed in Section 3.2. Classification algorithms could
be used to detect defective states. This would be the best choice
if the factors resulting in a defect are only temporary. Through
regression, prediction and forecasting could be implemented.
This would be more useful if the influencing parameters are
more continuous and need to be kept in check.

Since the 2000s DL, which belongs to ML, has seen a huge
surge in popularity. Though more traditional ML approaches
such as Support Vector Machines (SVM) have also shown suc-
cesses in manufacturing [34] [35], DL are most often superior.
The more traditional approaches require a manual feature ex-
traction, while DL networks are able to learn more complex
features in each layer which reduces the difficulty significantly
[22]. The advantages of deep neural networks have been proven
mathematically [36]. This is one of the reasons why it has seen
many successful implementations in manufacturing for the last
years [37] [38] and why it is chosen as the prime candidate for
the future work.

3.2. Roadmap to improve rotogravure manufacturing using DL

To test which algorithm is most suitable for a problem, the
required results and the data that can be used to train the neural
network need to be examined.

The eventual goal is to find ways that reduce the waste in
the production, which allows for distinct strategies. These can
range from detecting, with a high probability, that a defective
item was produced to further inspect the item for faults, to im-
proving the production step by adjusting controllable variables
that have an influence during the production through an au-
tomatic system. While the latter would be the ideal end state
where every production step would adjust itself to only produce
defect free items.

According to the Industry 4.0 maturity index from Schuh et
al. [39], the steps visibility, transparency, prognosis and auton-
omy can be described as a path towards Industry 4.0 or in more
general terms as an improvement to the manufacturing. This
can also be adapted to this case of quality improvement with
the help of DL as seen in Figure 5.

The first step increases the visibility of a system. Here
this could, for example, be done by visualizing the interact-
ing parameters through feature reduction with the help of auto-
encoders [40].

»
| s

Autonomy

The system al ically adj in

order to only produce defect free items

Prognosis

The system helps determine what is going

7\

The system can help identify why / \

defects have happened

Fig. 5. Potential steps in order to improve waste saving through quality im-
provement aided by the possibilities of DL.

to happen in future states

Transparency

Visibility
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Potential for saving waste

why defects occur

Creating transparency can achieve further potential. For ex-
ample, showing which parameters have a negative influence on
quality or how these parameters interact.

Making a prognosis can increase the potential. For exam-
ple, the staff could see the influence of the current state on the
system. With this knowledge, it’s possible to know which pa-
rameters have the biggest influence on the quality and should
be adjusted.

As the last step, a fully autonomous system can be imag-
ined, that adjusts its own parameters to only produce defect free
items.

Because the goal is to detect defects, it is necessary to know
when a defect has occurred. After the copper plating, the cylin-
der is checked by scanning the cylinder surface with the help
of a line-scan camera and an LED-light. Any holes, or other
anomalies can be detected through a deviation to the cylinder
surface. The check after the image transfer and the chrome
plating is more difficult but also starts by scanning the cylin-
der surface. Now it needs to be compared with the engraving
file through transformations and brightness adaptations as de-
scribed in [23]. These results are the target for all supervised
ML/DL algorithms in the training phase.

For the input data, it is necessary that it in more or less hid-
den form contains the information that a defect exists. It is desir-
able that no further delays or costs are added. These properties
to the current knowledge should be able to be achieved by the
data already produced by the machines in every production step.
These are usually a mix of different outputs from sensors and
parameters from the machine. In the case of the copper (Fig-
ure 4.3) and chrome plating (4.5) these would apply to the gal-
vanization process such as the temperature, the amount of ad-
ditives or the current strength. For the image transfer step (4.4)
these would be related to the speed of the machine, the pressure
to the stylus and any fluctuations in the electricity used. If it is
not possible to achieve the wanted results, added sensors could
be installed that contribute further information.
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4. Discussion and Conclusions

This paper proposes steps that should make it possible to
improve the quality in manufacturing and especially in ro-
togravure manufacturing for this case systematically. To ver-
ify the results, the authors aim to extend this work in the next
months by applying these concepts to real-life data of a ro-
togravure cylinder manufacturer. This should help to show that
a general systematic quality improvement and waste reduction
strategy is possible by using data and DL algorithms.

A roadmap of the planned next steps is shown in Figure 6 to
conclude this paper. It is not a simple transformation from 4-I to
4-I11, but consists of multiple steps that build upon each other.
The first step will be to have a visual inspection system after the
copper plating. This gives the information if a cylinder has de-
fects and will be the target data for the DL system in this part.
The second step will be to record the data from the used ma-
chines for the copper plating. This will be the input for the DL
system, from which it will learn which parameters influence the
emergence of defects. In the next step, the DL system will add
visibility to the copper plating by showing which parameters
have the biggest influence on the emergence of defects. Adding
to this, the next step will allow transparency by identifying why
defects have occurred. Through integrating the prognosis in the
next step, the ability will be added to determine the future out-
come and gives the ability to take preventive countermeasures.
These steps will be repeated for all the production steps until
in the last step full automation for the quality control can be
achieved.
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